Fast object detection based on binary deep convolution neural networks
نویسندگان
چکیده
منابع مشابه
Deep Neural Networks for Object Detection
Deep Neural Networks (DNNs) have recently shown outstanding performance on image classification tasks [14]. In this paper we go one step further and address the problem of object detection using DNNs, that is not only classifying but also precisely localizing objects of various classes. We present a simple and yet powerful formulation of object detection as a regression problem to object boundi...
متن کاملObject Detection for Semantic SLAM using Convolution Neural Networks
Conventional SLAM (Simultaneous Localization and Mapping) systems typically provide odometry estimates and point-cloud reconstructions of an unknown environment. While these outputs can be used for tasks such as autonomous navigation, they lack any semantic information. Our project implements a modular object detection framework that can be used in conjunction with a SLAM engine to generate sem...
متن کاملLow-memory GEMM-based convolution algorithms for deep neural networks
Deep neural networks (DNNs) require very large amounts of computation both for training and for inference when deployed in the field. A common approach to implementing DNNs is to recast the most computationally expensive operations as general matrix multiplication (GEMM). However, as we demonstrate in this paper, there are a great many different ways to express DNN convolution operations using ...
متن کاملStructured Prediction for Object Detection in Deep Neural Networks
Deep convolutional neural networks are currently applied to computer vision tasks, especially object detection. Due to the large dimensionality of the output space, four dimensions per bounding box of an object, classification techniques do not apply easily. We propose to adapt a structured loss function for neural network training which directly maximizes overlap of the prediction with ground ...
متن کاملPVANet: Lightweight Deep Neural Networks for Real-time Object Detection
In object detection, reducing computational cost is as important as improving accuracy for most practical usages. This paper proposes a novel network structure, which is an order of magnitude lighter than other state-of-the-art networks while maintaining the accuracy. Based on the basic principle of more layers with less channels, this new deep neural network minimizes its redundancy by adoptin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: CAAI Transactions on Intelligence Technology
سال: 2018
ISSN: 2468-2322,2468-2322
DOI: 10.1049/trit.2018.1026